

BigDAWG

Welcome to BigDAWG documentation

Introduction

The Intel Science and Technology Center for Big Data is developing an open-source reference implementation of a Polystore database. The BigDAWG (Big Data Working Group) system supports heterogeneous database engines, multiple programming languages and complex analytics for a variety of workloads.

[image: _images/fig1.png]
BigDAWG Architecture

This BigDAWG release contains our initial prototype of a polystore middleware as well as support for 3 database engines:
PostgreSQL, SciDB, and Accumulo. The architecture for this release is
shown above.

Our goal with this release is to give end-users and database researchers an idea about what a Polystore database looks like.
For the most part, we hope that you will download the release,
experiment with the data we have distributed and create your own
queries. Please do reach out to us if you have some bigger goals in
mind or if you run into any issues while using this release - we are happy to help you navigate.

A simple example

Before we get into the details of what BigDAWG is, here is a very
simple query example. This query execute a relational island query on
a polystore storing MIMIC II data in the BigDAWG language:

curl -X POST -d "bdrel(select * from mimic2v26.d_patients limit 4;)" http://localhost:8080/bigdawg/query/

Output:

subject_id sex dob dod hospital_expire_flg
1039 M 3063-10-05 00:00:00.0 3147-04-05 00:00:00.0 Y
1010 F 2620-12-07 00:00:00.0 2688-07-30 00:00:00.0 Y
1000 M 2442-05-11 00:00:00.0 2512-03-02 00:00:00.0 Y
1038 M 2747-06-02 00:00:00.0 2807-11-13 00:00:00.0 N

For further details on what islands are, please refer to the
Introduction and Overview section or refer to any one of our
numerous publications that describe BigDAWG.

Get the code

What you need to get started is in :ref:`getting-started`section.

For (future) reference, the short version is:

The source source [https://github.com/bigdawg-istc/bigdawg] is available on GitHub.

Within the Docker toolbox, go into the provisions directory of the above repository and run setup_bigdawg_docker.sh:

./setup_bigdawg_docker.sh

This should start up three databases and middleware. You should now be able to execute a query such as the one above in a seperate window.

Contributing

We hope that you find this area of research as interesting as we do! We look forward to community invovlement. If you are interested in contributing, please let us know, we have many ideas where we could use help.

We have many ideas for new contributors such as adding new engines, islands and improving middleware capabilities. If this sounds interesting, let us know and we can set up a time to chat.

Website: http://bigdawg.mit.edu

The mailing list for the project is located at google groups: http://groups.google.com/group/bigdawg
To contact the BigDAWG developers: bigdawg-help@mit.edu

Table of Contents

	1. Introduction and Overview
	1.1. Team

	1.2. Polystore Systems

	1.3. BigDAWG Approach

	1.4. Major BigDAWG Components

	1.5. MIMIC II dataset

	2. Getting Started with BigDAWG
	2.1. Prerequisites

	2.2. BigDAWG Cluster Setup Steps

	2.3. Run Example Queries

	2.4. Output Logs

	2.5. Viewing the Catalog

	2.6. Shutdown

	2.7. Docker Networking and Container Reference

	2.8. MIMIC II dataset

	2.9. Install the Administrative Web Interface

	3. BigDAWG Middleware Internal Components
	3.1. Query Endpoint

	3.2. Middleware Components

	3.3. Catalog

	3.4. Planner

	3.5. Migrator

	3.6. Executor

	3.7. Monitor

	4. BigDAWG Query Language
	4.1. BigDAWG Syntax Definitions

	5. Personalizing the setup
	5.1. Administrative Web Interface:

	5.2. Formulating Example Queries:

	5.3. Adding your own data:

	5.4. Adding your own engine

	5.5. Connecting to existing databases

	5.6. Adding your own island

	6. Selected BigDAWG Publications
	6.1. Overall architecture:

	6.2. BigDAWG applications:

	6.3. BigDAWG Middleware:

	7. Contributors
	7.1. Acknowledgement

	7.2. Contributors

	7.3. Alumni/Collaborators

	8. Frequently Asked Questions

1. Introduction and Overview

1.1. Team

BigDAWG is an open source project from researchers within the Intel Science and Technology Center for Big Data (ISTC).
Everything we do at the ISTC is open intellectual property so anyone is free to use whatever we produce.

The ISTC is based at MIT but includes researchers from Brown
University, the University of Chicago, Northwestern University,
the University of Washington, Portland State University,
Carnegie Mellon University, the University of Tennessee,
and, of course, Intel.

1.2. Polystore Systems

The slogan is now famous in the database community.
“One size does not fit all”. If data storage engines
match the data, performance of data intensive applications
are greatly enhanced. We’ve done significant performance analsys and
have found that using the right storage engine for the job can give you
orders of magnitude in performance advantage. Even beyond performance
advantages, often organizations already have their data spread
across a number of storage engines. Writing connectors across N
different systems can lead to a lot of work for developers and make
the cost of adding a new system very high.

This has led us to develop database technologies we call
“Polystore Systems.” A polystore system is any database management system (DBMS) that is built on top of multiple, heterogeneous, integrated
storage engines. Each of these terms is important to distinguish a
Polystore from conventional federated DBMS.

Obviously, a polystore must consist of multiple data stores. However, polystores should not to be confused with a distributed DBMS
which consists of replicated instances of a storage engine sitting behind a single query engine. The key to a polystore
is that the multiple storage engines are distinct and accessed separately through their own query engine.

Therefore, storage engines must be heterogeneous in a polystore system. If
they were the same, it would violate the whole point of polystore systems;
i.e. the mapping of data onto distinct storage engines well suited to the
features of components of a complex data set.

Finally, the storage engines must be integrated. In a federated DBMS, the individual storage engines are independent.
In most cases, they are not managed by a single administration team. In a polystore system,
the storage engines are managed together as an integrated set.
This is key since it means that in a polystore system, you can
modify engines or the middleware managing them such that “the whole is greater than the sum of their parts.”

The challenge in designing a polystore system is to balance two often conflicting forces.

	Location Independence: A query is written and the system figures out which storage engine it targets.

	Semantic Completeness: A query can exploit the full set of features provided by a storage engine.

The BigDAWG project
described in this document is our reference implementation of this
polystore concept. As we will see in the next section, BigDAWG uses the concepts of “islands” to balance these forces.

1.3. BigDAWG Approach

[image: _images/bigdawgArchitecture.png]
BigDAWG Architecture

Figure 1 describes the overall BigDAWG architecture. This figure is a representation of the
BigDAWG polystore system integrated with higher level components
to solve end-user applications. At the bottom, we have a collection
of disparate storage engines (we make no assumption about the data
model, programming model, etc. of each of these engines). These are organized into a number of islands.
An island is composed of a data model, a set of operations and a set
of candidate storage engines. An
island provides location independence among its associated storage
engines.

A shim connects an island to one or more storage engines. The shim
is basically a translator that maps queries expressed in terms of the
operations defined by an island into the native query language of
a particular storage engine.

A key goal of a polystore system is for the processing to occur on the
storage engine best suited to the features of the data. We expect
in typical workloads that queries will produce results best suited to
particular storage engines. Hence, BigDAWG needs a capability to move
data directly between storage engines. We do this with software
components we call casts.

1.4. Major BigDAWG Components

[image: _images/bigdawgmiddleware.png]
Internal Components of the BigDAWG Middleware

BigDAWG is at its core middleware that supports a common
application programming interface (API)
to a collection of storage engines. The middleware
contains a number of key elements:

	Optimizer: parses the input query and creates a set of viable query plan trees with possible engines for each subquery

	Monitor: uses performance data from prior queries to determine the query plan tree with the best engine for each subquery.

	Executor: figures out how to best join the collections of objects and then executes the query.

	Migrator: moves data from engine to engine when the plan calls for such data motion.

Each of these components will be described in more detail in a later section.

1.5. MIMIC II dataset

to demonstrate BigDAWG in action, we are using data collected by the PhysioNet
group (https://physionet.org/mimic2/). The MIMIC II dataset contains medical data collected from medical ICUs over a period of 8 years. The MIMIC II datasets consists of structured patient data (for example, things filled in an electronic health record), unstructured data (for example, of the nurse/doctor reports), and time-series waveform data (for example, data collected from different machines one may be connected to while in the EHR). The MIMIC II dataset is a great example of where a polystore solution may work well. The structural parts of the data can sit well in a traditional relational database, the free-form text in a key-value store and the time series waveforms in an array database.

In this release, we provide simple scripts to download this data and load it into appropriate databases. While we only leveraging
data the unrestricted parts of the data [https://physionet.org/mimic2/demo/] that do not require registration, we recommend you
take a look at Getting Access to the Full Dataset [https://physionet.org/mimic2/mimic2_access.shtml] . Also, if you are
using any of their data in your results, please be sure to cite them
appropriately.

2. Getting Started with BigDAWG

This section describes how to start a BigDAWG cluster, load an example dataset, and run several example queries.

[image: _images/system_overview.png]
BigDAWG Cluster Components

A BigDAWG cluster consists of the Middleware, Query Endpoint, Catalog, and multiple database engines. You can learn more about these components in the BigDAWG Middleware Internal Components section.

The purpose of this section is to guide you through the process of setting up a BigDAWG cluster with Docker [https://www.docker.com/], the open-source technology that allows you to deploy applications inside software containers [https://www.docker.com/what-docker]. You will pull baseline images from our Dockerhub repository, run images as instantiated containers, and then run scripts to populate the engines with test data. The current release of BigDAWG includes images for PostgreSQL, SciDB, and Accumulo.

A video demonstration [http://tiny.cc/k310gy] of these steps is also available to watch.

2.1. Prerequisites

To complete this guide, you will need basic knowledge of working with your computer’s command prompt/terminal, Docker, and Linux commands. You will also need your computer’s port 8080 available and will need administrator privileges on your system to install Docker.

Compatible Docker Installation

To follow the steps in this section, you will need to first install Docker on your system.
If your system is running Mac OSX or Windows, you should install Docker Toolbox [https://www.docker.com/products/docker-toolbox]. Follow the download and installation steps from the Docker website.

Note

BigDAWG has been tested on these versions of Docker:

	Docker version 1.11.1, build 5604cbe (Tested on Ubuntu 14.04)

	Docker version 1.12.1, build 6f9534c (Tested on Docker Toolbox for Mac, version 0.8.1, build 41b3b25)

	Docker version 1.12.6, build 78d1802 (Tested on Docker Toolbox for Mac)

Note

Do not use “Docker for Mac” or “Docker for Windows”, which are two alternative Docker applications, because of known networking limitations [https://docs.docker.com/docker-for-mac/networking/#/known-limitations-use-cases-and-workarounds] that interfere with this example. If your system is runnig Linux, then install Docker for Linux [https://docs.docker.com/engine/installation/linux/].

BigDAWG source code

Obtain the source code by cloning the git repository:

git clone https://github.com/bigdawg-istc/bigdawg.git

Alternatively, download the code directly from the website https://github.com/bigdawg-istc/bigdawg.git

2.2. BigDAWG Cluster Setup Steps

(Mac and Windows only) Open a Quickstart Terminal to Execute Docker Commands

Launch the Docker Quickstart Terminal application, which was installed when installing Docker Toolbox (this initialization can take some time). Launching this application will run a Docker host VM and open an initialized terminal window. Without this terminal, you will not be able to execute docker commands.

[image: _images/docker-quickstart-term.png]
Docker Quickstart Terminal Successfully Initialized

The status shown above means that Docker was started successfully.

Navigate to the “provisions” directory of the source code root

The source code root is a directory called “bigdawg”. All scripts executed in this tutorial assume that you are in the bigdawg/provisions directory.

Run the Docker setup script:

./setup_bigdawg_docker.sh

This script take will start a BigDAWG cluster using Docker containers. It can take up to 15-30 minutes to complete depending on your computer resources and internet connection. The script works in the following stages:

	Create a Docker network called bigdawg that allows the containers to communicate with each other.

	Pull “base” docker images from Docker Hub that encapsulate the database engines but contain no data.

	Run the images as instantiated containers.

	Download publically-available MIMIC II data. The BigDAWG project does not ship with any of data itself, so all data is downloaded from external sources.

	Execute scripts on the contianers to insert data into the engines.

	Start the BigDAWG Middleware on each container, and accept queries on the bigdawg-postgres-catalog container.

After the setup script completes, you will get a message:

Starting HTTP server on: http://bigdawg-postgres-catalog:8080/bigdawg/
2017-03-21 14:17:01,873 2767 istc.bigdawg.network.NetworkIn.receive(NetworkIn.java:39) [pool-2-thread-1] null DEBUG istc.bigdawg.network.NetworkIn - tcp://*:9991
2017-03-21 14:17:02,072 2966 istc.bigdawg.network.NetworkIn.receive(NetworkIn.java:43) [pool-2-thread-1] null DEBUG istc.bigdawg.network.NetworkIn - Wait for the next request from a client ...
Mar 21, 2017 2:17:23 PM org.glassfish.grizzly.http.server.NetworkListener start
INFO: Started listener bound to [bigdawg-postgres-catalog:8080]
Jersey app started with WADL available at http://bigdawg-postgres-catalog:8080/bigdawg/application.wadl
Hit enter to stop it...

If you hit any key, the Middleware execution will quit. Therefore, make sure to run any additional commands in a separate termainal window.

Optional setup verification

As an optional step, you can verify that the images were pulled successfully and check their running status.

To do this, create a separate Docker Quickstart terminal and run the following commands:

Check the status of all images:

docker images

user@local:~$ docker images
REPOSITORY TAG IMAGE ID CREATED SIZE
bigdawg/accumulo latest 804fa44f5eb4 2 seconds ago 1.656 GB
bigdawg/scidb latest c1b578c504bb 8 seconds ago 1.237 GB
bigdawg/postgres latest 1a2600f05cbb 12 seconds ago 1.086 GB

You should see the three images as shown above if the pull (phase 2 above) was successful.

Check the status of all running containers:

docker ps

user@local:~$ docker ps
CONTAINER ID IMAGE STATUS PORTS NAMES
ef66f13c4694 bigdawg/accumulo Up 1 minute 0.0.0.0:42424->42424/tcp bigdawg-accumulo-proxy
3e02a26c9da5 bigdawg/accumulo Up 1 minute 0.0.0.0:9999->9999/tcp, 0.0.0.0:50095->50095/tcp bigdawg-accumulo-master
13deae26bff7 bigdawg/accumulo Up 1 minute 0.0.0.0:9997->9997/tcp bigdawg-accumulo-tserver0
c6e6b8185d7f bigdawg/accumulo Up 1 minute 0.0.0.0:2181->2181/tcp bigdawg-accumulo-zookeeper
7d3135d17a7e bigdawg/accumulo Up 1 minute bigdawg-accumulo-namenode
3b1710639c09 bigdawg/scidb Up 1 minute 0.0.0.0:1239->1239/tcp bigdawg-scidb-data
4d119d50458c bigdawg/postgres Up 1 minute 0.0.0.0:5402->5402/tcp bigdawg-postgres-data2
626ba8425e5b bigdawg/postgres Up 1 minute 0.0.0.0:5401->5401/tcp bigdawg-postgres-data1
e4fe27b0c8ed bigdawg/postgres Up 1 minute 0.0.0.0:5400->5400/tcp, 0.0.0.0:8080->8080/tcp bigdawg-postgres-catalog

You should see all the containers running as shown above if the run (phase 3 above) was successful.

2.3. Run Example Queries

Warning

These commands will not work if you are using a VPN
connection or cannot access the Docker host IP address. If VPN is necessary for your system, contact us for tips that you may be able to use to work around this.

Warning

Your system must have port 8080 available for the Middleware to initialize successfully.

Once the containers are running, the Catalog container will run the Query Endpoint (a simple HTTP server) listening on port 8080. The container is configured to publish its port 8080 to the Docker VM’s port 8080, so that queries sent to that port will be routed to the Query Endpoint. You can then submit queries to this port like so:

$ curl -X POST -d "bdrel(select * from mimic2v26.d_patients limit 4;)" http://192.168.99.100:8080/bigdawg/query/

Here, we are using curl, a shell command, to handle requests and responses to and from a web server, in this case the Query Endpoint, over the HTTP protocol.

2.3.1. Example Queries

In this section, we describe a few queries on the MIMIC II dataset that you can execute once you have successfully completed the above steps.

All queries use the following syntax:

$ curl -X POST -d "<query-goes-here>" http://192.168.99.100:8080/bigdawg/query/

We are making a POST request to send the query string as data to the Query Endpoint at the resource /bigdawg/query/. The IP address 192.168.99.100 is used by the Docker host VM, which is forwarding its port 8080 to the container running the Query Endpoint.

1) postgres only

bdrel(select * from mimic2v26.d_patients limit 4)

This query uses the relational island (bdrel) to select 4 entries from the table mimic2v26.d_patients.

Here is the full curl command:

curl -X POST -d "bdrel(select * from mimic2v26.d_patients limit 4;)" http://192.168.99.100:8080/bigdawg/query/

2) scidb only

bdarray(filter(myarray,dim1>150))

This query uses the array island (bdarray) to filter all entries in the array myarray with dim1 greater than 150. Note The SciDB connector is in beta mode.

Here is the full curl command:

curl -X POST -d "bdarray(filter(myarray,dim1>150));" http://192.168.99.100:8080/bigdawg/query/

3) accumulo only

bdtext({ 'op' : 'scan', 'table' : 'mimic_logs', 'range' : { 'start' : ['r_0001','',''], 'end' : ['r_0015','','']} })

This query uses the text island (bdtext) to scan all entries in the Accumulo table mimic_logs with row keys between r_0001 and r_00015.

Here is the full curl command:

curl -X POST -d "bdtext({ 'op' : 'scan', 'table' : 'mimic_logs', 'range' : { 'start' : ['r_0001','',''], 'end' : ['r_0015','','']} });" http://192.168.99.100:8080/bigdawg/query/

4) postgres to postgres

bdrel(select * from mimic2v26.additives,mimic2v26.admissions where mimic2v26.additives.subject_id=mimic2v26.admissions.subject_id limit 10)

This query joins data stored in two seperate postgres instances. Essentially, the tables mimic2v26.additives,mimic2v26.admissions are split among two different postgres instances.

Here is the full curl command:

curl -X POST -d "bdrel(select * from mimic2v26.additives,mimic2v26.admissions where mimic2v26.additives.subject_id=mimic2v26.admissions.subject_id limit 10;)" http://192.168.99.100:8080/bigdawg/query/

5) scidb to postgres

bdrel(select * from bdcast(bdarray(filter(myarray,dim1>150)), tab6, '(i bigint, dim1 real, dim2 real)', relational))

This query moves data from scidb to postgres. The bdarray() portion of the query filters all entries in the scidb array myarray with dim1>150. The bdcast() portion of the query tells the middleware to migrate this resultant array to a table called tab6 with schema (i bigint, dim1 real, dim2 real) to a database in the relational island. The final bdrel() portion of the query selects all entries from this resultant table in postgres.

Here is the full curl command:

curl -X POST -d "bdrel(select * from bdcast(bdarray(filter(myarray,dim1>150)), tab6, '(i bigint, dim1 real, dim2 real)', relational))" http://192.168.99.100:8080/bigdawg/query/

6) postgres to scidb

bdarray(scan(bdcast(bdrel(SELECT poe_id, subject_id FROM mimic2v26.poe_order LIMIT 5), poe_order_copy, '<subject_id:int32>[poe_id=0:*,10000000,0]', array)))

This query moves data from postgres to scidb. The bdrel() portion of the array selects the columns poe_id, subject_id FROM mimic2v26.poe_order. The bdcast() portion of the query tells the middleware to migrate this data to an array called poe_order_copy with schema <subject_id:int32>[poe_id=0:*,10000000,0] in the array island. The final bdarray() portion of the query scans this resultant array in scidb. Note The SciDB connector is in beta mode. We are having some problems with the current SciDB JDBC connector in which delivery of result arrays where dimensions span more than one chunk can lead to an error.

Here is the full curl command:

curl -X POST -d "bdarray(scan(bdcast(bdrel(SELECT poe_id, subject_id FROM mimic2v26.poe_order LIMIT 5), poe_order_copy, '<subject_id:int32>[poe_id=0:*,10000000,0]', array)));" http://192.168.99.100:8080/bigdawg/query/

7) accumulo to postgres

bdrel(select * from bdcast(bdtext({ 'op' : 'scan', 'table' : 'mimic_logs', 'range' : { 'start' : ['r_0001','',''], 'end' : ['r_0020','','']} }), tab1, '(cq1 text, mimic_text text)', relational))

This query moves data from accumulo to postgres. The bdtext() portion of the query scans the accumulo table mimic_logs from row keys r_0001 to r_00020. The bdcast() portion of the query tells the middleware to migrate these resultant key-value pairs to a table called tab1 with schema (cq1 text, mimic_text text) in the relational island. The final bdrel() portion of the query selects all entries from this resultant table.

Here is the full curl command:

curl -X POST -d "bdrel(select * from bdcast(bdtext({ 'op' : 'scan', 'table' : 'mimic_logs', 'range' : { 'start' : ['r_0001','',''], 'end' : ['r_0020','','']} }), tab1, '(cq1 text, mimic_text text)', relational))" http://192.168.99.100:8080/bigdawg/query/

8) postgres to accumulo

bdtext({ 'op' : 'scan', 'table' : 'bdcast(bdrel(select * from mimic2v26.icd9 limit 4), res, '', text)'})

This query moves data from postgres to accumulo. The bdrel() portion of the query select 4 entries from the table mimic2v26.icd9. The bdcast() portion of the query tells the middleware to migrate these entries to a text island table called res. Finally, the bdtext() portion of hte array scans this resultant table.

Here is the full curl command:

curl -X POST -d "bdtext({ 'op' : 'scan', 'table' : 'bdcast(bdrel(select * from mimic2v26.icd9 limit 4), res, '', text)'})" http://192.168.99.100:8080/bigdawg/query/

2.4. Output Logs

All logging is saved to a Postgres database called logs which resides on the bigdawg-postgres-catalog container. You can attach to the container by running the following Docker command in a separate Quickstart Terminal:

user@local:~$ docker exec -it bigdawg-postgres-catalog bash
postgres@bigdawg-postgres-catalog:/$

This command will attach to the bigdawg-postgres-catalog container, and logs you in as the user postgres, so you can execute psql queries from there.

postgres@bigdawg-postgres-catalog:/$ psql
psql (9.4.10)
Type "help" for help.

postgres=# \l
 List of databases
 Name | Owner | Encoding | Collate | Ctype | Access privileges
-----------------+----------+----------+---------+---------+-----------------------
 bigdawg_catalog | postgres | UTF8 | C.UTF-8 | C.UTF-8 |
 bigdawg_schemas | postgres | UTF8 | C.UTF-8 | C.UTF-8 |
 logs | pguser | UTF8 | C.UTF-8 | C.UTF-8 |
 postgres | postgres | UTF8 | C.UTF-8 | C.UTF-8 |
 template0 | postgres | UTF8 | C.UTF-8 | C.UTF-8 | =c/postgres +
 | | | | | postgres=CTc/postgres
 template1 | postgres | UTF8 | C.UTF-8 | C.UTF-8 | =c/postgres +
 | | | | | postgres=CTc/postgres
(6 rows)

postgres=# \c logs
You are now connected to database "logs" as user "postgres".

logs=# SELECT * FROM logs LIMIT 5;
 id | user_id | time | logger | level | message
----+---------+-------------------------+--------------------------+-------+--
 1 | | 2017-03-21 20:36:11.342 | istc.bigdawg.LoggerSetup | INFO | Logging was configured!
 2 | | 2017-03-21 20:36:11.427 | istc.bigdawg.Main | INFO | Starting application ...
 3 | | 2017-03-21 20:36:11.435 | istc.bigdawg.Main | INFO | Connecting to catalog
 4 | | 2017-03-21 20:36:11.452 | istc.bigdawg.Main | INFO | Checking registered database connections
 5 | | 2017-03-21 20:36:11.601 | istc.bigdawg.Main | DEBUG | args 0: bigdawg-scidb-data
(5 rows)

logs=# \q
postgres@bigdawg-postgres-catalog:/$ exit
user@local:~$

The \q command exits psql and returns you to the bigdawg-postgres-catalog container’s shell. The subsequent exit command returns you to your local system shell.

2.4.1. Exporting logs

You can also dump the logs from the container into a text file on your local system with the following command:

docker exec -it bigdawg-postgres-catalog pg_dump -a -d logs -t logs > logs.txt

This will write the contents of the logs table of the logs database to a file called logs.txt on your local system.

2.5. Viewing the Catalog

You may view the contents of the Catalog database by sending queries to the Query Endpoint using the bdcatalog() syntax.

As an example, you may view the engines table of the Catalog database by executing the following:

curl -X POST -d "bdcatalog(select * from catalog.engines);" http://192.168.99.100:8080/bigdawg/query/

eid name host port connection_properties
0 postgres0 bigdawg-postgres-catalog 5400 PostgreSQL 9.4.5
1 postgres1 bigdawg-postgres-data1 5401 PostgreSQL 9.4.5
2 postgres2 bigdawg-postgres-data2 5402 PostgreSQL 9.4.5
3 scidb_local bigdawg-scidb-data 1239 SciDB 14.12
4 saw ZooKeeper zookeeper.docker.local 2181 Accumulo 1.6

See the Catalog Manipulation section for more details about the query language, and see the Catalog section for more details about the contents and purpose of the Catalog.

2.6. Shutdown

When finished, stop and remove the containers:

./cleanup_containers.sh

Stopping a container means that the container ceases execution, but is still visible in the docker ps -a output list. Removing a container deletes all additional filesystem layers added to the associated image. In either case, the image is still present on your system, so that it doesn’t need to be pulled from the Docker repository again.

After stopping and removing, you must run the ./setup_bigdawg_docker.sh script to start the BigDAWG cluster again.

Additionaly, if you’re using Docker Toolbox, you can stop the VM running Docker with the following command:

docker-machine stop default

2.7. Docker Networking and Container Reference

[image: _images/docker_network_demo_mode.png]
Docker Networking Configuration

Below is a list of the Docker containers and the primary functions they serve:

	bigdawg-postgres-catalog

	Runs the Catalog, Middleware, and Query Endpoint. The Query Endpoint listens for queries on bigdawg-postgres-catalog and port 8080

	bigdawg-postgres-data1

	Runs PostgreSQL loaded with the MIMIC II patient dataset

	bigdawg-postgres-data2

	Runs PostgreSQL loaded with a copy of the Mimic II patient dataset. Used for demonstrating migration between 2 PostgreSQL instances

	bigdawg-scidb

	Runs SciDB with MIMIC II waveform data

	Accumulo containers: several containers support the Accumulo stack:

	bigdawg-accumulo-master: Master server
bigdawg-accumulo-tserver0: Handles client reads and writes
bigdawg-accumulo-zookeeper
bigdawg-accumulo-namenode
bigdawg-accumulo-proxy

In order for the containers to communicate with each other, they are connected to a Docker network named bigdawg, which was created with the docker network create command. In addition, each container exposes any required ports for other containers to connect to and publishes ports, which makes them available to both other containers and the Docker Host. This is all handled by the startup scripts above.

Below is a listing of the ports published by each container.

	hostname: bigdawg-postgres-catalog

	port 5400 for postgres, 8080 for accepting bigdawg queries

	hostname: bigdawg-postgres-data1

	port 5401 for postgres

	hostname: bigdawg-postgres-data2

	port 5402 for postgres

	hostname: bigdawg-scidb

	port 1239 for scidb, 49901 for ssh

	hostname: accumulo-data-master

	port 9999 for Master thrift server, 50095 for Monitor service

	hostname: accumulo-data-tserver0

	port 9997 for TabletServer thrift server

	hostname: accumulo-data-tserver1

	(no ports)

	hostname: accumulo-data-zookeeper

	port 2181 for zookeeper client connections

	hostname: accumulo-data-namenode

	(no ports)

	hostname: accumulo-data-proxy

	(no ports)

If using docker-toolbox, the Docker Host will have IP address 192.168.99.100, which you can check using this command:

$ docker-machine ip default
> 192.168.99.100

Otherwise, if on Linux, the Docker Host IP is your own localhost IP.

2.8. MIMIC II dataset

For the above examples, we are using data collected by the PhysioNet
group (https://physionet.org/mimic2/). While we are only leveraging
data the unrestricted parts of the data [https://physionet.org/mimic2/demo/] that do not require registration, we recommend you
take a look at Getting Access to the Full Dataset [https://physionet.org/mimic2/mimic2_access.shtml] . Also, if you are
using any of their data in your results, please be sure to cite them
appropriately.

2.9. Install the Administrative Web Interface

A very basic administrative web interface is included with this release, which will let you see the status of the BigDAWG cluster of databases, start and stop containers, and view the Catalog objects table.

You can view a video demonstration here [http://tiny.cc/idggjy]

[image: _images/admin_ui_status.png]
Container Status and Start/Stop Interface

[image: _images/admin_ui_catalog.png]
Catalog Objects Interface

2.9.1. Requirements:

You will need pip [https://pypi.python.org/pypi/pip] to install the python dependencies.

This interface has been tested with python versions 2.7.10, 2.7.11, and 3.5.2.

2.9.2. Installation instructions:

Note

If running on Mac or Windows, run the UI in a Docker Quickstart Terminal because Docker commands must be accessible by the Flask app.

Change directory to the “admin_ui” directory of the project root.

Install the python requirements with pip:

pip install -r requirements.txt

Edit the text file “catalog_config.txt” and configure the following credentials to connect to the Catalog database:

database=bigdawg_catalog
user=pguser
password=test
host=192.168.99.100
port=5400

Run the server with:

export FLASK_APP=app.py
flask run --host=0.0.0.0

The output will specify the local host and IP:

$ flask run --host=0.0.0.0
> * Serving Flask app "app"
> * Running on http://127.0.0.1:5000/ (Press CTRL+C to quit)

Navigate to the address shown above in a web browser and it will display the web interface.

[image: _images/admin_ui_status.png]
Administrative Web Interface

See usage instructions in the administration section.

3. BigDAWG Middleware Internal Components

This section describes each Middleware component and their interaction
in more technical detail. It is meant for contributors to BigDAWG or
for adaptation of the Middleware to your own project or Polystore implementation.

[image: _images/system_overview.png]
System Overview

The major components of the BigDAWG middleware are shown in the figure above. The sections below provide a technical description of each.

3.1. Query Endpoint

The Query Endpoint is responsible for accepting user queries, passing them to the Middleware, and responding with results.

The Query Endpoint is a simple HTTP server that’s executed by the istc.bigdawg.main() method. The hostname/IP address and port used by this server is configurable by setting the following configuration properties:

grizzly.ipaddress=localhost
grizzly.port=8080

See the Getting Started with BigDAWG section or example queries that can be passed to the Query Endpoint.
For more information on the syntax of query langage, refer to BigDAWG Query Language.

3.2. Middleware Components

The middleware has four components: the query planning module (planner), the performance monitoring module (monitor), the data migration module (migrator) and
the query execution module (executor). Given an incoming query, the planner parses the query into collections of objects and creates a set of possible query plan trees that also highlights the possible engines for each collection of
objects. The planner then sends these trees to the monitor which uses existing performance information to determine a tree with the best engine for each collection of objects (based on previous experience
of a similar query). The tree is then passed to the executor which determines the best method to combine the collections of objects and executes the query. The executor can use the migrator to move objects
between engines and islands, if required, by the query plan. Some of the implementation details of each of these components are described below. Please refer to the publications section to learn more.

3.3. Catalog

The Catalog is responsible for storing metadata about the polystore and its data objects.
The Planner, Migrator, and Executor all rely on the Catalog for “awareness” of the BigDAWG’s components, such as the hostname and IP address of each engine, Engine to Island assignments, and the data objects stored in each engine.

The Catalog is itself a PostgreSQL cluster with 2 databases: bigdawg_catalog and bigdawg_schemas.

3.3.1. bigdawg_catalog Database

This database contains the following tables.

	engines table: Engines currently managed by the Middleware, including engine name and connection information.

[image: _images/catalog-engines.png]
Example Engines Table

	databases table: Databases currently managed by the Middleware, their corresponding engine membership, and connection authentication information.

[image: _images/catalog-databases.png]
Example Databases Table

	objects table: Data objects (i.e., tables) currently managed by the Middleware, including fieldnames and object-to-database membership.

[image: _images/catalog-objects.png]
Example Objects Table

	shims table: Shims describing which engine is integrated into each island.

[image: _images/catalog-shims.png]
Example Shims Table

	casts table: information about what casts are available between each engine.

3.3.2. bigdawg_schemas Database

This database is made up of tables whose column schema define the schema of each data object. For example, the table d_patients from the MimicII dataset has the following schema in the bigdawg_schemas database.

CREATE TABLE mimic2v26.d_patients
(
 subject_id integer,
 sex character varying(1),
 dob timestamp without time zone,
 dod timestamp without time zone,
 hospital_expire_flg character varying(1)
)

3.4. Planner

This section details the Planner. The Planner coordinates all query execution.
It has a single static function that initiates query processing for a
given query and handles the result output.

package istc.bigdawg.planner;

public class Planner {
 public static Response processQuery(
 String userinput, boolean isTrainingMode
) throws Exception
}

The String userinput is the string of a BigDAWG query.

When the boolean of isTrainingMode is true, the Planner will perform query optimization by enumerating all possible orderings of execution steps
that will produce an identical result. Then, the Planner sends the enumeration to the Monitor to gather query execution metrics.
The Planner will then pick the fastest plan to run and return the result to the Query Endpoint.
When isTrainingMode is false, the Planner will consult the Monitor to retrieve the best query plan based on past execution metrics.

The processQuery() function first checks if the query is intended to interact with the Catalog.
If so, the query is routed to a specical processing module to parse and process these Catalog-related queries.
Otherwise, processQuery() proceeds to parse and processing the query string.

Data retrieval queries are passed as inputs to the constructor of a CrossIslandQueryPlan object.
A CrossIslandQueryPlan object holds a nested structure that represents a plan for inter-island query execution.
An inter-island query execution is specified by CrossIslandPlanNode objects organized in tree structures: the nodes either carry information
for an intra-island query or an inter-island migration.

Following the creation of the CrossIslandQueryPlan, the Planner traverses the tree structure of CrossIslandPlanNode objects and executes the
intra-island queries, invokes migrations, and then produces the final result.

3.5. Migrator

The data migration module for the BigDAWG polystore system exposes a single convenient interface to other
modules. Clients provide the connection information for source and destination databases as well as
a name of the object (e.g. table, array) to be extracted from the source database, and a name of the object
(e.g. table, array) to which the data should be loaded.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52

	package istc.bigdawg.migration;

 /**
 * The main interface to the migrator module.
 */
 public class Migrator {
 /**
 * General method (interface, also called facade) for other modules to
 * call the migration process.
 *
 * @param connectionFrom Information about the source
 * database (host, port, database name, user name,
 * user password) from which the data should be
 * extracted.
 *
 * @param objectFrom The name of the object
 * (e.g. table, array) which should be extracted
 * from the source database.
 *
 * @param connectionTo Information about the
 * destination database (host, port, database name,
 * user name, user password) to which the data
 * should be loaded.
 *
 * @param objectTo The name of the object
 * (e.g. table, array) which should be loaded to
 * the destination database.
 *
 * @param migrationParams Additional parameters for the migrator,
 * for example, the "create statement" (a statement to create an object:
 * table/array) which should be executed in the database
 * identified by connectionTo; data should be loaded to this new
 * object, the name of the target object in the create statement
 * has to be the same as the migrate method parameter: objectTo
 *
 * @return {@link MigrationResult} Information about
 * the results of the migration process (e.g. number of
 * extracted elements (rows, cells) from the destination database,
 * number of loaded elements (rows, cells) to the destination database,
 * the duration of the migration in milliseconds.
 *
 * @throws MigrationException Information why the migration failed (e.g. no access to one
 * of the databases, schemas are not compatible, etc.).
 *
 */
 public static MigrationResult migrate(
 ConnectionInfo connectionFrom, String objectFrom,
 ConnectionInfo connectionTo, String objectTo,
 MigrationParams migrationParams)
 throws MigrationException;
 }
 }

An example of how the data migrator module can be called is
presented below.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

	public class UseMigrator {
 public static void Main(String ... args) {
 logger.debug("Migrating data from PostgreSQL to PostgreSQL");
 FromDatabaseToDatabase migrator = new
 FromPostgresToPostgres();
 ConnectionInfo conInfoFrom = new
 PostgreSQLConnectionInfo("localhost", "5431",
 "mimic2", "pguser", "test");
 ConnectionInfo conInfoTo = new
 PostgreSQLConnectionInfo("localhost", "5430",
 "mimic2", "pguser", "test");
 MigrationResult result;
 try {
 result = migrator.migrate(conInfoFrom,
 "mimic2v26.d_patients",
 conInfoTo, "mimic2v26.d_patients");
 } catch (MigrationException e) {
 logger.error(e.getMessage());
 }
 logger.debug("Number of extracted rows: "
 + result.getCountExtractedElements()
 + " Number of loaded rows: " +
 result.getCountLoadedElements());
 }
}

Internally, the Migrator identifies the type of the databases by examinig the connection information.
The ConnectionInfo object is merely an
interface and we check what the real type of the object is.
The connection object represents a specific database (e.g.
PostgreSQL, SciDB, Accumulo or S-Store).
Currently, we support migration between instances of PostgreSQL,
SciDB and Accumulo. There is an efficient binary
data migration between PostgreSQL and SciDB. We work on
distributed migrator (at present it works between instances
of PostgreSQL) and tighter integration with S-Store as well as more
efficient connection with Accumulo.

3.5.1. Binary migration

The data transformation module, which converts data be-
tween different (mainly binary) formats, is the important part
of the data migrator. This module is implemented in C/C++
to achieve high performance. The binary formats require
operations at the level of bits and bytes. Many data formats apply encoding to
values of attributes in order to decrease storage footprint.

To build the C++ migrator navigate to: bigdawgmiddle/src/main/cmigrator/buil in the maven project.
We use CMake to build this part of the project. Simply execute:

cd bigdawgmiddle/src/main/cmigrator/build
cmake ..
make

3.6. Executor

The Executor executes intra-island queries through static functions.
The static functions create instances of PlanExecutor objects that execute individual intra-island queries.

package istc.bigdawg.executor;

public class Executor {
 public static QueryResult executePlan(
 QueryExecutionPlan plan,
 Signature sig,
 int index
) throws ExecutorEngine.LocalQueryExecutionException, MigrationException;

 public static QueryResult executePlan(
 QueryExecutionPlan plan
) throws ExecutorEngine.LocalQueryExecutionException, MigrationException;

 public static CompletableFuture<Optional<QueryResult>> executePlanAsync(
 QueryExecutionPlan plan,
 Optional<Pair<Signature, Integer>> reportValues
);
}

The PlanExecutor objects are created from QueryExecutionPlan objects that represent execution plans of an intra-island query.
A QueryExecutionPlan holds details of sub-queries that are required for their execution and a graph that provides dependency information among the sub-queries.
The PlanExecutor takes information from a QueryExecutionPlan object and issues the sub-queries to their corresponding databases and calls the appropriate
Migrator classes to migrate intermediate results.

package istc.bigdawg.executor;

class PlanExecutor {
 /**
 * Class responsible for handling the execution of a single QueryExecutionPlan
 *
 * @param plan
 * a data structure of the queries to be run and their ordering,
 * with edges pointing to dependencies
 */
 public PlanExecutor(
 QueryExecutionPlan plan
)
}

3.7. Monitor

The BigDAWG monitor is responsible for managing queries.

	1
2
3
4
5

	class Monitor {
 public static boolean addBenchmarks(Signature signature, boolean lean);
 public static List<Long> getBenchmarkPerformance(Signature signature);
 public static Signature getClosestSignature(Signature signature);
 }

The signature parameter is provided to identify a query.

The addBenchmarks method adds a new benchmark.
If the lean parameter is false, the benchmark is immediately run over
all of its possible query execution plans (henceforth referred to as QEP).

The getBenchmarkPerformance method returns a list of execution times for a particular benchmark, ordered in same order that the benchmark’s QEPs are received.

The best way to use the module is to add all of the relevant benchmarks first using the addBenchmarks method and then
retrieve information through getBenchmarkPerformance.

One of the more useful features is contained in the getClosestSignature method, which tries to find the closest matching benchmark for
the provided signature. In this way, a user can add many benchmarks that are believed to cover the majority of query use cases.
Then you use the getClosestSignature method to find a matching benchmark and compare the QEP times to your current signature’s QEPs.
On missing any matching signatures, you can add the current signature as a new benchmark.

There are many opportunities to enhance this feature to improve the matching, possibly by utilizing machine learning techniques.

The public methods in the Monitor class are the only API endpoints that should be used.
In contrast, the MonitoringTask class updates the benchmark timings periodically and should be run in the background through a daemon.

4. BigDAWG Query Language

Fundamentally, BigDAWG is middleware that provides a common
application programming interface to a collection of distinct
storage engines. To the typical user, BigDAWG is viewed as
a query engine for the polystore system; hence, understanding
how these queries are written is key to understanding BigDAWG.

BigDAWG queries are written with the BigDAWG Query language
which uses a functional syntax:

bdrel(...)

A function token (‘bdrel’ in this case) indicates how the syntax
within the parenthesis is interpreted. For example,
the ‘bdrel’ function token indicates that this is a
query for the relational island and any code between the parenthesis
will be interpreted as SQL code.

Five function tokens are defined in BigDAWG. Three function tokens
indicate the islands targeted by a query:

	bdrel – the query targets the relational island and uses PostgreSQL.

	bdarray – the query targets the array island and uses SciDB’s AFL query language.

	bdtext – the query targets the text island and uses either SQL or D4M.

The remaining function tokens deal with metadata for the
polystore system and the migration of data between islands:

	bdcatalog – the query targets the BigDAWG catalog using SQL.

	bdcast – the query is a cast operation for inter-island data migration.

Queries using the ‘bdcast’ function token behave differently than
queries based on the other function tokens. A ‘bdcast’ query is
always nested inside other queries to indicate migration of data
between islands.

In the next few subsections, we summarize operations supported by each
island and provide a formal definition of the
BigDAWG query syntax. See Example Queries for examples of BigDAWG queries.

4.1. BigDAWG Syntax Definitions

4.1.1. BigDAWG Query

BigDAWG Query Syntax:

BIGDAWG_SYNTAX ::=
 BIGDAWG_RETRIEVAL_SYNTAX | CATALOG_QUERY

BIGDAWG_RETRIEVAL_SYNTAX ::=
 RELATIONAL_ISLAND_QUERY | ARRAY_ISLAND_QUERY | TEXT_ISLAND_QUERY

4.1.2. Catalog Manipulation

Catalog manipulation queries are used to directly view the content
of the catalog.

You may find the list of catalog_table_name in Catalog.

CATALOG_QUERY ::=
 { bdcatalog(catalog_table_name { [column_name] [, ...] }) }
 | { bdcatalog(full_sql_query_applied_to_the_catalog_database) }

4.1.3. Inter-Island Cast

The differences between two data models can give rise to ambiguities
when migrating data between them. When issuing a Cast that invokes
an Inter-Island migration, the user avoids such ambiguities by
providing the schema used in the destination island.

Cast Syntax:

BIGDAWG_CAST ::=
 bdcast(BIGDAWG_RETRIEVAL_SYNTAX, name_of_intermediate_result, {
 {, POSTGRES_SCHEMA_DEFINITION, relational}
 | {, SCIDB_SCHEMA_DEFINITION, array}
 | {, TEXT_SCHEMA_DEFINITION, text}})

4.1.4. Relational Island

The Relational Island follows the relational data model, where
data is organized into tables. The rows of a table are
termed as tuples and columns simply as columns.

The Relational Island currently supports a subset of
SQL used by PostgreSQL. It allows you to issue single-layered
SELECT query with filter, aggregation, sort and limit
operations.

	Relational Island supports the following data types:

	integer, varchar, timestamp, double, float

Relational Island Syntax:

RELATIONAL_ISLAND_QUERY ::=
 bdrel(RELATIONAL_SYNTAX)

RELATIONAL_SYNTAX ::=
 SELECT [DISTINCT]
 { * | { SQL_EXPRESSION [[AS] output_name] [, ...] } }
 FROM FROM_ITEM [, ...]
 [WHERE SQL_CONDITION]
 [GROUP BY column_name [, ...]]
 [ORDER BY SQL_EXPRESSION [ASC | DESC]
 [LIMIT integer]

FROM_ITEM ::=
 { table_name | BIGDAWG_CAST } [[AS] alias]

SQL_EXPRESSION ::=
 SQL_NON_AGGREGATE_EXPRESSION
 | SQL_AGGREGATE

SQL_NON_AGGREGATE_EXPRESSION ::=
 literal
 | column_name
 | { SQL_NON_AGGREGATE_EXPRESSION SQL_BINARY_ALGEBRAIC_FUNCTION SQL_NON_AGGREGATE_EXPRESSION }
 | { - SQL_EXPRESSION }
 | {(SQL_EXPRESSION)}
 | SQL_CONDITION

SQL_BINARY_ALGEBRAIC_FUNCTION ::=
 + | - | * | / | %

SQL_CONDITION ::=
 { SQL_NON_AGGREGATE_EXPRESSION SQL_CONDITION_OPERATOR
 SQL_NON_AGGREGATE_EXPRESSION }
 | { SQL_NON_AGGREGATE_EXPRESSION SQL_BINARY_LOGICAL_OPERATOR
 SQL_NON_AGGREGATE_EXPRESSION }

SQL_CONDITION_OPERATOR ::=
 = | < | > | <= | >= | !=

SQL_BINARY_LOGICAL_OPERATOR ::=
 AND

SQL_AGGREGATE ::=
 { SQL_AGGREGATE_NAME([DISTINCT] SQL_NON_AGGREGATE_EXPRESSION [, ...]) }
 | { count({ * | SQL_NON_AGGREGATE_EXPRESSION })}
 | { width_bucket(SQL_NON_AGGREGATE_EXPRESSION, double_precision_number,
 double_precision_number, integer) }

SQL_AGGREGATE_NAME ::=
 sum | avg | min | max

POSTGRES_SCHEMA_DEFINITION ::=
 ({ column_name sql_data_type POSTGRES_COLUMN_CONSTRAINT } [, ...])

POSTGRES_COLUMN_CONSTRAINT ::=
 { [PRIMARY KEY]
 | [REFERENCES table_name [(column_of_table_referenced)]] }
 [[NOT] NULL]

4.1.5. Array Island

The Array Island follows an array data model, where data is organized
into arrays. Arrays are multi-dimensional grids, where each cell in
the grid contains a number of fields. Each dimension of an array is
referred to as a dimension and each field in a cell is termed an
attribute. Dimensions assume unique values whereas attributes are
allowed duplicates. A combination of dimension values across all
dimensions in an array uniquely identify an individual cell of attributes.

The Array Island currently supports a subset of SciDB’s Array
Functional Language (AFL). It allows for project, aggregation,
cross_join, filter and schema reform. Array Island also allows
attribute sorting; however, at the moment, only sort in ascending
order is supported.

	Array Island supports the following data Types:

	string, int64, datetime, double, float

Array Island Syntax:

ARRAY_ISLAND_QUERY ::=
 bdarray(ARRAY_SYNTAX)

ARRAY_SYNTAX ::=
 { scan(array_name) }
 | { project(ARRAY_ISLAND_DATA_SET [, attribute] [...]) }
 | { filter(ARRAY_ISLAND_DATA_SET, SCIDB_EXPRESSION) }
 | { aggregate(ARRAY_ISLAND_DATA_SET, SCIDB_AGGREGATE_CALL [, ...] [, dimension] [...]) }
 | { apply(ARRAY_ISLAND_DATA_SET {, new_attribute, SCIDB_NON_AGGREGATE_EXPRESSION} [...]) }
 | { cross_join(ARRAY_ISLAND_DATA_SET [as left-alias], ARRAY_ISLAND_DATA_SET [as right-alias] [, [left-alias.]left_dim1, [right-alias.]right_dim1] [...]) }
 | { redimension(ARRAY_ISLAND_DATA_SET, { array_name | SCIDB_SCHEMA_DEFINITION }) }
 | { sort(ARRAY_ISLAND_DATA_SET [, attribute] [...] }) }

ARRAY_ISLAND_DATA_SET ::=
 array_name | ARRAY_ISLAND_SYNTAX | BIGDAWG_CAST

SCIDB_EXPRESSION ::=
 SCIDB_AGGREGATE_CALL
 | SCIDB_NON_AGGREGATE_EXPRESSION

SCIDB_BINARY_ALGEBRAIC_FUNCTION ::=
 + | - | * | / | %

SCIDB_CONDITION ::=
 { SCIDB_NON_AGGREGATE_EXPRESSION SCIDB_CONDITION_OPERATOR SCIDB_NON_AGGREGATE_EXPRESSION }
 | { SCIDB_NON_AGGREGATE_EXPRESSION SCIDB_BINARY_LOGICAL_OPERATOR SCIDB_NON_AGGREGATE_EXPRESSION }
 | { regex({ attribute_name | dimension_name }, 'regex_expression') }
 | { iif (SCIDB_BINARY_PREDICATE, SCIDB_ALGEBRAIC_EXPRESSION, SCIDB_ALGEBRAIC_EXPRESSION) }

SCIDB_NON_AGGREGATE_EXPRESSION ::=
 literal
 | dimension
 | attribute
 | { SCIDB_NON_AGGREGATE_EXPRESSION SCIDB_BINARY_ALGEBRAIC_FUNCTION SCIDB_NON_AGGREGATE_EXPRESSION }
 | { - SCIDB_EXPRESSION }
 | {(SCIDB_EXPRESSION)}
 | SCIDB_CONDITION

SCIDB_CONDITION_OPERATOR ::=
 = | < | > | <= | >= | !=

SCIDB_BINARY_LOGICAL_OPERATOR ::=
 AND

SCIDB_AGGREGATE_CALL ::=
 SCIDB_AGGREGATE_FUNCTION(dimension)

SCIDB_AGGREGATE_FUNCTION ::=
 sum | avg | min | max

SCIDB_SCHEMA_DEFINITION ::=
 <{attribute_name: data_type} {, ...}>
 \[{ dimension_name = { integer_lower_bound | * } : { integer_upper_bound | * } , integer_cell_size, integer_overlap} [, ...] \];

4.1.6. Text Island

The Text Island logically organizes data in tables, and retrieves
data in a key-value fashion. This is modeled after the data model of
the Accumulo engine. When queried for a certain table, it returns
a list of key-value pairs. The key contains row label, column family label,
column qualifier label, and a time stamp. The value is a string.

The Text Island query syntax adopts a JSON format using single-quote
for labels and entries. The user can issue full table scan or
range retrieval queries.

	Text Island supports the following data Types:

	string

Text Island Syntax:

TEXT_ISLAND_QUERY ::=
 bdtext(TEXT_ISLAND_SYNTAX)

TEXT_ISLAND_SYNTAX ::=
 { 'op' : 'TEXT_OPERATOR', 'table' : '(table_name | BIGDAWG_CAST)' [, 'range' : { TEXT_ISLAND_RANGE }] }

TEXT_ISLAND_RANGE ::=
 TEXT_ISLAND_RANGE_START_KEY
 | TEXT_ISLAND_RANGE_END_KEY
 | (TEXT_ISLAND_RANGE_START_KEY, TEXT_ISLAND_RANGE_END_KEY)

TEXT_ISLAND_RANGE_START_KEY ::=
 'start' : \['start_row','[start_column_family]','[start_column_qualifier]'\]

TEXT_ISLAND_RANGE_END_KEY ::=
 'end' : \['end_row','[end_column_family]','[end_column_qualifier]'\]

TEXT_OPERATOR ::=
 scan

TEXT_SCHEMA_DEFINITION ::=
 ()

 This section provides some tips on how you can adapt the BigDAWG system for your own data. Specifically, we describe how to use the administrative web interface, add your own database engine, add your own tables/databases and tips on how to construct your own island. Some of these may require some level of expertise so please do not hesitate to contact us if you have any questions!

5. Personalizing the setup

5.1. Administrative Web Interface:

A very basic administrative web interface is included with this release, which will let you see the status of the BigDAWG cluster of databases, start and stop containers, and view the Catalog objects table.

You can view a video demonstration here [http://tiny.cc/idggjy]

[image: _images/admin_ui_status.png]
Container Status and Start/Stop Interface

[image: _images/admin_ui_catalog.png]
Catalog Objects Interface

5.2. Formulating Example Queries:

todo: (Add information about writing other queries)

5.3. Adding your own data:

You can register a new database with a BigDAWG cluster by adding information about the database to the Catalog. Once the Catalog is updated, the Middleware is aware of the new database and can perform all island-compatible queries on it.

For example, assume that you can add a simple relational database named inventory with a table named products consisting of product information such as the following:

	ItemNumber
	ItemName
	Price

	1
	Banana
	0.99

	2
	Apple
	1.25

	3
	Carrot
	1.30

There are 3 parts of the Catalog that must be updated. Recall that the Catalog itself is a Postgres database named bigdawg_catalog.

1.) The databases table requires the following fields:

	dbid: serial integer for referring to the database by ID

	engine_id: serial integer for referring to the type of engine that this database corresponds to. This ID should be read from the eid value of the

	engines table in the Catalog.

	name: name of the database. In this example, this value would be “inventory”.

	userid: the username used to log into the new database

	password: the password used to log into the new database

For example, an INSERT statement would look like this:

INSERT INTO catalog.databases values(8, 0, inventory, postgres, test);

2.) The objects table requires the following fields:

	oid: serial integer for referring to the new table.

	name: name for the new data object. In this example, the value would be “products”

	fields: A comma-separated string of column names in the products table

	logical_db: An ID referencing the database ID from the databases table

	physical_db: An ID referencing the database ID from the databases table

For example, an INSERT statement would look like this:

INSERT INTO catalog.objects values(52, products, ItemNumber,ItemName,Price, 8, 8);

3.) bigdawg_schemas table:

CREATE TABLE products (ItemNumber integer, ItemName varchar(40), Price real);

5.4. Adding your own engine

This guide provides you a starting point to integrate a database with JDBC driver into the BigDAWG middleware. For other types of databases, please reach out to us and we will work with you.

	Find the associated JDBC driver, and add it as a dependency to pom.xml

	Create the associated ConnectionInfo, DBHandler, DBInstance, etc. classes for the database engine. (See Postgresql package for reference.)

	Create a new query generator if existing ones are not fully compatible. Also might need some sort of utility class to convert datatype names to some common representation (e.g. Postgresql datatypes – see)

	Modify islands.TheObjectThatResolvesAllTheDifferencesAmongTheIslands.java - EngineEnum, getQConnectionInfo(), getQueryGenerator(), and anywhere else that would be appropriate.

	Create Export and Load classes for the Database engine (under migration)

	Create migrators to/from Postgres (or any other engines you want to migrate to/from)

	Register the new migrators in Migrator.java

	When setting up your BigDAWG instance, make sure to add an entry to the catalog to let it know your database engine exists. Also add entries for the schemas for tables stored on that index.

5.5. Connecting to existing databases

Use can use the middleware distributed in this release to connect to an existing database. For this example, we assume that you have an existing Postgres instance that you would like to connect to. Let’s assume that the database name if foo and that this database has two tables foo_table1 and foo_table2.

	Clone the git repository to a system that can connect to the Postgres database (from https://github.com/bigdawg-istc/bigdawg):

	In the Postgres database, create two new databases: 1) bigdawg_catalog with schema catalog and 2) bigdawg_schemas. The bigdawg_catalog database contains a variety of information such as connection properties, names of tables and schema. Look at /provisions/cluster_setup/postgres-catalog/bdsetup/catalog_inserts.sql for an example of what tables are filled for connecting to the various MIMIC II tables. You will need to add the engine connection information in catalog. In this case, you will add a row to catalog.engines for the existing Postgres database; entries in catalog.databases for the bigdawg_catalog, bigdawg_schemas, and foo databases. You will also need to add information about the tables foo_table1 and foo_table2 to the catalog.objects table.

3) In the bigdawg_schemas database, create empty schemas for the foo database similar to what we did for the MIMIC II database:
./provisions/cluster_setup/postgres-catalog/bdsetup/mimic2_schemas_ddl.sql

	Now, you can compile the code you downloaded.

First, you need to edit file profiles/dev/dev-config.properties so that the middleware knows where to look for the Postgres engine. Specifically look at the following lines to modify:

==================
Catalog database
==================

postgresql.url=jdbc:postgresql://host:port
postgresql.user=XXXXXXXXX
postgresql.password=XXXXXXXXX

Once you are done editing this file, close and save it and you are ready to package the JAR in the root directory using the following command:

mvn package -P mit -DskipTests -f pom.xml -q

	Now that you have packaged the jar, you should be ready to execute it using the following command:

mvn exec:java -f pom.xml -P mit -q

The above command will start the bigdawg instance on the current node you are running on.

	If you are running the Postgres engine on another host, you need to launch the middleware on that host as well. For example, you can ssh into that node and use the same command as above to run it.

ssh node
mvn exec:java -f pom.xml -P mit -q

	Now, you should be ready to issue a query

curl -X POST -d "bdrel(select * from foo.table1);" http://localhost:8080/bigdawg/query

5.6. Adding your own island

This guide provides a road-map for adding new islands to the BigDAWG system.
Creating an island involves four general steps: determine the language and functionalities
supported by the island, implement supports for the island language and logical representations
of the functionalities in the BigDAWG context, creating shims between the island
and the database engines, and create a front-end support for other BigDAWG components.
We will elaborate on these steps using the current Text Island as an example.

	Determining the language and functionalities

We model our island on the functionalities of Apache Accumulo. It is therefore by
design to support only complete or ranged table scans. Therefore, we need to only
support one operation: Scan, with optional range parameters. Consequently, there
will not be nested expressions. As with other islands, we will not reformat
the results.

	Implement supports for the language and its functionalities in the BigDAWG context

For query optimization purposes, functionalities of an island are represented by
implementation of Java interface Operator and its extensions, such as SeqScan,
or sequential scan. In our case, we want to implement a Text Island operator that
scans a table, with optional specification of ranges. Therefore, we want to create
the class TextScan that implements SeqScan interface.

Note that to retain extendibility for the Text Island, we first created a parent
abstract class named TextOperator that implements the Operator interface; we
extended the TextOperator class to create our TextScan.

Language support entails parsing user query into an Abstract Syntax Tree (AST) with
Operator nodes. In our case, each query will consist of a single TextScan
and there will not be branches.

We therefore use the JSON to implement our language. In a JSON object, we require
the user to provide a field of table name and an optional JSON object to specify
range in the query. We use the org.json.simple.parser.JSONParser in our language
parser to create TextScan operators.

	Creating shims for BigDAWG Query Executor

At the moment, we only want to connect Accumulo to the Text Island. Therefore we
implement the Shim Java interface to create our shim, TextToAccumulo shim.
The virtual functions listed in Shim provides a very good guideline of what
needs to be done to connect Accumulo to the Text Island.

	Creating planner and executor facing front

We begin by creating the TextIsland interface used by the Planner and Executor.
The TextIsland class implements Java interface Island. In the TextIsland class,
we need to define the default database to which an inter-island intermediate result
could be migrated. This is done by looking up the database’s dbid in the Catalog.
The setup and tear down virtual functions are intended for creating and destroying
temporary tables used for inter-island query execution. The virtual function for
creating Literal and Constant Signature asks for a list of constants, therefore we
return a list of values used in the range specification.

We then implement IntraIslandQuery Java interface to create the logical
intra-island execution plan of the Text Island. Here, we make use of the setup and
tear down functions created in TextIsland to create support for new tables migrated
from another island.

In other islands, an operator such as a Join could take multiple table inputs.
The intra-island execution plan needs to create ‘cut points’ in the AST to divide
the AST into containers – sub-queries using naturally co-located tables – and a remainder
– a skeleton AST that executes with migrated intermediate results. The traverse
virtual function is designated to recursively mark natural locations of a table or sub-query
and create containers out of any sub-query whose children are not co-located. pruneChild
is used to mark a node in an AST so that a sub-query starting from the node is used to create
a container. It is hinted that a remainderLoc with a positive value indicate all input tables co-locate and no containers are constructed; a zero value indicate that at least two containers exist.

getQEPs function lists all viable Query Execution Plans (QEPs) composed from
permutations of the query. A permutation produces the same result as does the original
query, yet it has a different order for Joins. The different permutations are run used
by the monitor, which then records performance information with regard to each
permutation. getQEP (without s) is used to extract a specific QEP.

At last, we modify IslandAndCastResolver to finish the integration, and add new entries
to the BigDAWG Catalog to make them usable.

6. Selected BigDAWG Publications

6.1. Overall architecture:

“The BigDAWG Polystore System and Architecture”,
Vijay Gadepally, Peinan Chen, Jennie Duggan, Aaron Elmore, Brandon Haynes,
Jeremy Kepner, Samuel Madden, Tim Mattson, Michael Stonebraker.
IEEE High Performance Extreme Computing, 2016.

BigDAWG overall architecture and details of various middleware
components along with some performance results.

“The Big Dawg Polystore System”,
J. Duggan, A. J. Elmore, M. Stonebraker, M. Balazinska, B. Howe,
J. Kepner, S. Madden, D. Maier, T. Mattson, S. Zdoânik.
ACM Sigmod Record, 44(3), 2015.

Original vision paper on BigDAWG architecture.

6.2. BigDAWG applications:

“Demonstrating the BigDAWG Polystore System for Ocean Metagenomic Analysis”,
Tim Mattson, Vijay Gadepally, Zuohao She, Adam Dziedzic, Jeff Parkhurst
CIDR’17 Chaminade, CA, USA

This paper describes a second application based on BigDAWG; an
oceanography dataset including integration with the S-Store
system for streaming data.

“A Demonstration of the BigDawg Polystore System”,
A. Elmore, J. Duggan, M. Stonebraker, U. Cetintemel, V. Gadepally,
J. Heer, B. Howe, J. Kepner, T. Kraska, S. Madden, D. Maier,
T. Mattson, S. Papadopoulos, J. Parkhurst, N. Tatbul, M. Vartak, S. Zdonik.
Proceedings of VLDB, 2015.

This paper describes our performance measurements with the MIMCII dataset.

6.3. BigDAWG Middleware:

“The BigDAWG Monitoring Framework”,
Peinan Chen, Vijay GAdepally, Michael Stonebraker
IEEE High Performance Extreme Computing, 2016.

This paper describes the BigDAWG monitoring framework.

“BigDAWG Polystore Query Optimization Through Semantic Equivalences”,
Zuohao She, Surabhi Ravishankar, Jennie Duggan
IEEE High Performance Extreme Computing, 2016.

This paper describes query optimization in BigDAWG.

“Cross-Engine Query Execution in Federated Database Systems”,
Ankush M. Gupta, Vijay Gadepally, Michael Stonebraker (MIT)
IEEE High Performance Extreme Computing, 2016.

This paper describes how queries are split between different islands.

“Data Transformation and Migration in Polystores”,
Adam Dziedzic, Aaron J. Elmore, Michael Stonebraker

This paper describes how the casts work in BigDAWG.

“Integrating Real-Time and Batch Processing in a Polystore”,
John Meehan, Stan Zdonik Shaobo Tian, Yulong Tian,
Nesime Tatbul, Adam Dziedzic, Aaron Elmor

This paper provides details behind the integration of the
S-Store streaming system with BigDAWG.

7. Contributors

7.1. Acknowledgement

The development of BigDAWG was supported by the Intel Science and Technology Center (ISTC) for Big Data. The authors also wish to thank collaborators as Brown University, University of Washington, Portland State University, Universtiy of Tennessee and Intel for their collaboration.

7.2. Contributors

There are a number of people involved in developing the current version of the codebase:

Adam Dziezdzic

Aaron Elmore

Vijay Gadepally

Jeremy Kepner

Kyle O’Brien

Sam Madden

Timothy Mattson

Jennie Rogers

Mike Stonebraker

Zuohao She

7.3. Alumni/Collaborators

We are fortunate to have a number of collaborators who have helped us along the way:

Magdalena Balazinska, University of Washington

Leilani Battle, MIT CSAIL

Ugur Cetintemel, Brown University

Peinan Chen, MIT CSAIL

Ankush Gupta, MIT CSAIL

Brandon Haynes, University of Washington

Jeffrey Heer, University of Washington

Bill Howe, University of Washington

Tim Kraska, Brown University

David Maier, Portland State University

Stavros Papadopoulos, Intel

Jeff Parkhurst, Intel

Surabhi Ravishankar, Northwestern University

Ran Tan, North Carolina State University

Nesime Tatbul, Intel and MIT

Kristin Tufte, Portland State University

Manasi Vartak, MIT CSAIL

Katherine Yu, MIT CSAIL

Stan Zdonik, Brown University

8. Frequently Asked Questions

1.) What is BigDAWG?:

BigDAWG (short for Big Data Working Group) is a reference
implementation of a Polystore database [http://wp.sigmod.org/?p=1629]. Essentially, BigDAWG
provides the middleware needed to talk to multiple disparate engines
(for example, SQL, NoSQL and NewSQL engines) while using multiple
data model and programming languages (for example, SQL, AFL,
AQL). More details about BigDAWG can be found in our publications.

2.) Where do I download get started and download everything I need to
see what you have released?:

See Getting Started with BigDAWG for details.

3.) How do I modify the queries or make my own?:

See Section BigDAWG Query Language

4.) How do I add my own engine?:

See Section BigDAWG Query Language and contact us for help! Perhaps
someone has already integrated (or is in the process of integrating) the engine of interest.

5.) How do I add my own data/tables?:

We’ve distributed a handy Python script that can help you load
data. See administration for details on how to use this. If
you have more questions, of course, email us!

6.) What is the query API?:

Section BigDAWG Query Language addresses the query language we use.

7.) How do I create a new island?:

Looks at Section administration for insight on how to do this. Please feel free to reach out to us if you have any other questions or comments.

8.) How do I contact the development team with bugs, questions, etc.?

Email us at bigdawg-help@mit.edu

9.) How is BigDAWG licensed?

The BigDAWG middleware is licensed under the terms of the BSD 3-clause license. Please note that external componenents such as database management engines may have their own license agreements. Please reach out to us for specific licensing questions.

Index

 _images/catalog-objects.png
oid name fields logical_db physical_db
[PK] serial character varying(50) character varying(800) serial serial

E mimic2vZe.a_chartdurations subject_id,icustay_id,itemid, 2 3
1 mimic2vZ2e.a_iodurations subject_id,icustay_id,itemid, 2 3
2 mimic2vZ2e.a_meddurations subject_id,icustay_id,itemid, 2 3
3 mimicZvee.additives subject_id,icustay_id,itemid, 2 3

_images/bigdawgArchitecture.png
Visualizations Clients Applications

Relational Island Array Island Island ...

RN

I | Cast I I | Cast I
Relational Array
DB DB

_static/ajax-loader.gif

_images/catalog-shims.png
shim_id island_id engine_id access_method

[PK] serial serial serial character varying(30)
[} [} [} NSA
1 [} 1 NSA
2 [} 2 NSA
3 1 3 NSA
4 2 4 NSA

_static/down.png

_images/admin_ui_catalog.png
C' | ® 0.0.0.0:5000/catalog

“ HByYyROO0D

BigDAWG Admin Cluster Status ~ Data Catalog ~ Important Links
Engines
Engine ID Name Host Port Connection Properties
0 postgres0 bigdawg-postgres-catalog 5400 PostgreSQL 9.4.5
1 postgres1 bigdawg-postgres-datail 5401 PostgreSQL 9.4.5
2 postgres2 bigdawg-postgres-data2 5402 PostgreSQL 9.4.5
3 scidb_local bigdawg-scidb-data 1239 SciDB 14.12
4 saw ZooKeeper zookeeper.docker.local 2181 Accumulo 1.6
Data Objects
Object
ID Table Name Contents / Schema
0 mimic2v26.a_chartdurations subject_id,icustay_id,itemid,elemid,starttime,startrealtime,endtime,cuid,duration
1 mimic2v26.a_iodurations subject_id,icustay_id,itemid,elemid,starttime,startrealtime,endtime,cuid,duration
2 mimic2v26.a_meddurations subject_id,icustay_id,itemid,elemid,starttime,startrealtime,endtime,cuid,duration
3 mimic2v26.additives subject_id,icustay_id,itemid,ioitemid,charttime,elemid,cgid,cuid,amount,doseunits,route

4 mimic2v26.admissions hadm_id,subject_id,admit_dt,disch_dt

_static/up.png

_images/docker_network_demo_mode.png
Host Machine
192.168.99.100

User query

4

192.168.99.100:8080

192.168.99.100

)

Published
Docker network ports
/7 8080 > 8080
http://bigdawg-postgres-catalog
5400 > 5400 [«
x i 8080
] http://bigdawg-postgres-datal
H 5401 > 5401
c
E 8080
§ http://bigdawg-postgres-data2 5402 » 5202
o
3
3 8080
2 http://bigdawg-scidb-data
L 1239 > 1239
8080
http://zookeeper.docker.local
2181 > 2181

:5400

Catalog
viewing

_static/down-pressed.png

_images/catalog-engines.png
eid name host port connection_properties

[PK] serial character varying(15) character varying(40) integer character varying(100)
] postgres@ bigdawg-postgres-catalog 548@ PostgreSQL 9.4.5
1 postgresl bigdawg-postgres-datal 5481 PostgreSQL 9.4.5
K postgresZ bigdawg-postgres-dataZ 5482 PostgreSQL 9.4.5
3 scidb_local bigdawg-scidb-data 1239 |5ciDB 14.12

4 saw ZooKeeper zookeeper.docker.local 2181 Accumulo 1.6

_static/plus.png

_static/comment-close.png

_static/comment.png

_static/file.png

_static/minus.png

nav.xhtml

 Table of Contents

 		BigDAWG

 		Introduction and Overview

 		Team

 		Polystore Systems

 		BigDAWG Approach

 		Major BigDAWG Components

 		MIMIC II dataset

 		Getting Started with BigDAWG

 		Prerequisites

 		BigDAWG Cluster Setup Steps

 		Run Example Queries

 		Example Queries

 		Output Logs

 		Exporting logs

 		Viewing the Catalog

 		Shutdown

 		Docker Networking and Container Reference

 		MIMIC II dataset

 		Install the Administrative Web Interface

 		Requirements:

 		Installation instructions:

 		BigDAWG Middleware Internal Components

 		Query Endpoint

 		Middleware Components

 		Catalog

 		bigdawg_catalog Database

 		bigdawg_schemas Database

 		Planner

 		Migrator

 		Binary migration

 		Executor

 		Monitor

 		BigDAWG Query Language

 		BigDAWG Syntax Definitions

 		BigDAWG Query

 		Catalog Manipulation

 		Inter-Island Cast

 		Relational Island

 		Array Island

 		Text Island

 		Personalizing the setup

 		Administrative Web Interface:

 		Formulating Example Queries:

 		Adding your own data:

 		Adding your own engine

 		Connecting to existing databases

 		Adding your own island

 		Selected BigDAWG Publications

 		Overall architecture:

 		BigDAWG applications:

 		BigDAWG Middleware:

 		Contributors

 		Acknowledgement

 		Contributors

 		Alumni/Collaborators

 		Frequently Asked Questions

_images/fig1.png
Applications

Middleware

Islands

Shims

MIMIC 1l
Data

Examples, Tests, Sample Applications

BigDAWG Common Interface/API

Relational Island Array Island Text Island

PostgreSQL &iDB Accumulo

* Patient History * Patient Timeseries « Doctor/Nurse notes
+ Patient Medication Waveform « Test notes

_static/up-pressed.png

_static/comment-bright.png

_images/docker-quickstart-term.png
.
#HE HH HH
#EHE OHH HH HE
Ya "w__y

B

docker is configured to use the default machine with IP 192.168.99.100
For help getting started, check out the docs at https://docs.docker.com

_images/admin_ui_status.png
® 127.0.0.1:5000

BigDAWG Admin Cluster Status Data Catalog

bigdawg-accumulo-proxy
bigdawg-accumulo-master
bigdawg-accumulo-tserver0
bigdawg-accumulo-zookeeper
bigdawg-accumulo-namenode
bigdawg-scidb-data
bigdawg-postgres-data2
bigdawg-postgres-datail

bigdawg-postgres-catalog

Important Links

Cluster Status

Status

exited
exited
exited
exited
exited
exited
exited
exited

exited

Start

Start

Start

Start

Start

Start

Start

Start

Start

_images/system_overview.png
Catalog :'E:"Ijl

Queries I i
Middleware
Er?::;iynt (Planner, Executor,
(HTTP Server) Migrator, and

Monitor)

Admin
Interface

_images/bigdawgmiddleware.png
Complete plan

Query | Optimizer

Original | | Perf.
Query Info
Monitor

Executor || Output »

Data Transfer
Request

Perf. Info

Migrator

_images/catalog-databases.png
dbid engine_id name userid password

[PK] serial serial character varying(15) character varying(15) character varying(15)
]] bigdawg_catalog postgres test

1] bigdawg_schemas postgres test

2 1 mimic2 postgres test

3 2 mimicZ_copy postgres test

4 %] tpch postgres test

5 1 tpch postgres test

<] 3 scidb_local scidb scidbl23

7 4 accumulo bigdawg bigdawg

